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Uncertainties and an Interpretation of Nonrelativistic
Quantum Theory

Shiro Ishikawa'
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We propose an interpretation of nonrelativistic quantum theory which can be
considered a generalized Copenhagen interpretation. The uncertainties (i.e., Ag
and Ap} in Heisenberg’s uncertainty relation Aq- Ap = #/2 can be characterized
as (average) errors in an approximate simultaneous measurement if the interpre-
tation proposed here is accepted in nonrelativistic quantum mechanics. Under
this interpretation, the {discrete) trajectory of a particle (like “Wilson chamber”)
is significant enough. We propose to analyze this trajectory numerically.

1. INTRODUCTION

Recently, we discussed Heisenberg’s uncertainty relation Ag - Ap= /2
(Ishikawa, 1991), gave a mathematical definition of Ag and Ap, and proved
a certain inequality which could be considered as a mathematical representa-
tion of Heisenberg’'s uncertainty relation. We mention some of the results
obtained in Ishikawa (1991) in order to exhibit our motivations in this note.

Let H be a Hilbert space with the inner product (-, ). Let Ay,
A,...,An_, be any physical quantities (i.e., self-adjoint operators) in a
Hllbert space H. A quarter M= (K, v, (X, %, F),f=(fs,...,fn-1)) is called
an approximate simultaneous measurements of {AJ ) in H if it satisfies
the following conditions:

1. v is an element in a Hilbert space K such that |jv]lx =1, and
(X, %, F) is a projection-valued probability space in a tensor Hilbert space
H®K and f: X > R" is a measurable map

2. Put A= fil (x)F(dx)(k=0,1,. —1); then, for each &, a set
D,(A) (={ucH: u®ue D(Ak) the domam of A.}) is a core of A, i.e.,
A, is essentially self-adjoint on D, (AA)
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3. For each k, {u, Aau)y ={(u®u, Ak(u®v))H®K(u e D,(A,)).

Furthermore, we assume that M satisfies the following additional
conditions:

4. For each k, (Ak: A, ®I) on D(A) N D(A,®1) has the unique
self-adjoint extension [A; — A, ® I].

5. Aset{uc H: u®Quve(r D(/ik)} is a dense set in a Banach space
Ho(={ue H: u®veNd D((A, -~ A, ®I])}) with the norm

i (=l + T 1A~ A@ IO 0o

Note that the existence of an approximate simultaneous measurement
of {A )R-, satisfying conditions 4 and 5 is proved in Abu-Zeid (1987) [or
Ishikawa (1991) in detail]).

Now the unfitness [in Ishikawa (1991) we did not dare to call it “‘error”
or “uncertainty” since its physical meaning seemed to be not clear]
{Am(Ag, u): k=0,..., N—1} of an approximate simultaneous measure-
ment M for {Aese on a state u (J|lul|y =1) is defined by Ap(Ay, u)=
I[Ac = Ac® IN(u®v)|| ok if u®ve D([A~ A ®I]) =00 otherwise. We
obtained the following theorem in Ishikawa (1991).

Theorem 1. Let Ay and A, be a pair of conjugate observables in
a Hilbert space H (i.e., symbolically, A,A,—A,A;=ih). Let M=
(K, v, (X, % F),f=(f, f1)) be any approximate simultaneous measurement
of Ayand A, satisfying the additional conditions 4 and 5. Then, the following
inequality holds:

Anm(Ag, u) - Am(A,, u)=h/2 (1

for all ue H(|lu|y =1), where the left-hand side of (1) is defined as =
if Ap( Ay, u) =0 for some k=0, 1.

Special and simple cases of this theorem were also investigated in Ali
and Emch (1974), Ali and Prugove&ki (1976), and Busch (1985).

If we take a standpoint within the so-called “Copenhagen interpreta-
tion,” we believe that inequality (1) is just Heisenberg’s uncertainty relation
(though there is a possibility to improve the conditions 4 and 5. And we
believe that the relation between the EPR argument (Einstein et al., 1935,
Selleri, 1990) and Heisenberg’s uncertainty relation becomes clear in
Ishikawa (1991). However, the observations in Ishikawa (1991) are not
necessarily physical, but rather mathematical. Hence we think that the
physical meaning of the unfitness {Ay(Ag, u): k=0, 1} is still not clear.
Furthermore, we think that it is necessary to discuss the matter from various
viewpoints in order to conclude that the inequality (1) is a mathematical
representation of Heisenberg’s uncertainty relation.
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It is natural to consider that the “‘error A” in the (approximate)
measurement should mean the (average) distance between the “true’ value
X and the (approximate) measurement value x, i.e., A=d(x, £). Also, the
“true” value usually means the value obtained by the (accurate) measure-
ment in the Copenhagen interpretation. However, if we think in this way,
the uncertainties (i.e., Ag and Ap) cannot be characterized as “‘errors.”
Because the Heisenberg uncertainty relation assures that any accurate
simultaneous measurement of the position and momentum does not exist,
it is impossible to know the “true” value X; then we cannot define the
“errors” A(q) and A(p). So, in Ishikawa (1991) we did not call Ay(A, u)
“error,” but “unfitness.” We think that it is suitable to call it “unfitness”
if we study it under the so-called Copenhagen interpretation. However, we
think that the physical meaning of the “unfitness” {Ap(A,, u)| k=0, 1} will
never become clear within this interpretation. Therefore, in Section 2, we
propose an interpretation in nonrelativistic quantum mechanics which can
be considered as a generalized Copenhagen interpretation. Under this
interpretation, we define the “error” {8y ( Ay, u) |k =0, 1} of an approximate
simultaneous measurement M= (K, v, (X, &, F), f={(fs, /1)) of A, and A,
and show that {5y,( Ay, u)| k=0, 1} and {An( Ay, u)| k=0, 1} are equal under
some conditions. And we show that an analogue of Theorem 1 [i.e.,
Sm(Ag, u)8m(A,, u)= h/2] holds. Also, our interpretation seems to be very
convenient for discussing quantum mechanical theory. As an example, in
Section 3 we analyze the so-called ““Wilson chamber” under this interpreta-
tion. We show that there is some reason to consider the (discrete) trajectory
of a particle. Furthermore, we propose to analyze this trajectory numerically.

2. AN INTERPRETATION AND UNCERTAINTIES

In this section, we first propose an interpretation in nonrelativistic
quantum mechanics. Let V be a Hilbert space. A projection-valued probabil-
ity F on a measurable space X (with a o-field %) in a Hilbert space V is
defined by the following conditions:

6. For every 2c¢ %, F(Z) is a projection in V such that F(&) =0 and
F(X)=1I, where 0 is a 0-operator and I is an identity operator in V.

7. For any countable decomposition {E;};2, of B, (E;,,E€ %), F(E)=
Y, F(Z;) holds, where the series is weakly convergent.

8. F can be generated by a countable family {E?|=2%< X, i=1,2,...}.

Also, a triplet (X, &, F) is called a projection-valued probability space
in V. Note that the condition (8) is rather weak. For example, if X is a
complete separable metric space and & is its Borel space, then (8) is clearly
assured.
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In this note, we use the projection-valued probability spaces as a
mathematical model of observables. So, we shall chiefly call a projection-
valued probability space an observable. Note that any self-adjoint operator
A in V has the unique spectral representation A=IR AE, (dM); then we
sometimes identify a self-adjoint operator A with an observable (R, 8, E,),
where & is a Borel field on R, so we sometimes consider A= (R, &, E,).
Projection-valued probability spaces (or more generally, positive operator-
valued probability spaces) are investigated in Davies (1976), where a positive
operator-valued probability space is called an observable. However, we
shall here call a projection-valued probability space an observable, since
we do not use positive operator-valued probability spaces in this note.

Axiom 0 (Born’s probabilistic interpretation). Let ¢ be a state of a
system S in a Hilbert space V and let (X, %, F) be an observable in V.
Then, the probability that x, (€ X)), the measurement value obtained by the
measurement of the observable (X, %, F) for this system S, belongs to a set
B (e %) is given by (¢, F(E)¢) .

Of course, this axiom is fundamental. The following axiom requires
that measurement value=>*‘true” value.

Axiom 1 (Measurement value and “true” value). Let ¢ be a state of
a system S in a Hilbert space V and let (X, %, F) be an observable in V.
If we get x, (€ X) by the measurement of the observable (X, %, F) for this
system S, then we can believe that the “true” value of the observable
(X, #, F) for this system S is the same x;.

All physicists will agree to this axiom. However, our interpretation
does not assert that measurement value< “true” value. Of course, if we
think so, we must define “true” value. This will be done implicitly through
Postulates 1-5 and Axioms 1 and 2. In this sense, Postulates 1-5 can be
regarded as the definition of “true” value. Before we mention our main
Axiom 2, we must prepare Postulates 1-4,

Postulate 1. Let ¢ be a state of a system S in a Hilbert space V and
let (X, %, F) and (Y, %, G) be observables in V such that there is a measur-
able map f: X - Y satisfying that F(f~'(I')) = G(I") (VI € 9). If we know
that the “true” value of the observable (X, %, F) for a system S is x, (€ X),
then we can believe that the “true” value y, (€ Y') of the observable (Y, ¥, G)
for this system S is f(x,), that is, yo = f(x,).

Remark 1. Using this postulate, we can define the simultaneous
measurement [in the ordinary sense (von Neumann, 1932)] of commutative
observables. For example, see the arguments below (5) and (6). Though
these arguments are mentioned in the general case, the reader can easily
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find that observations about simultaneous measurements cannot be made
without Postulate 1. So, we believe that almost physicists will agree to
Postulate 1, if they think that simultaneous measurements (in the ordinary
sense) of commutative observables should be possible.

Before we mention Postulate 2, we must prepare the following lemma.

Lemma 1. Let  be a state in a Hilbert space V (i.e., ¢ € V and
l¢r]lv =1). Let (X, &, F) be an observable in V. Put P )= ‘“the projection
on a smallest closed subspace that contains {F(E)¢|=e #}”. Then, the
following hold:

Pirp =4 )
PiryF(E)= F(E)P gy (VEe %) (3)
Proof. Clearly, (2) holds. Let ¢ € V. Then, for any positive integer n,

we can take an n decomposition {Z7}/_, of X (E]e %) and a complex
sequence {a;};_; such that P gy =lim, Z};l a; F(E})y. Therefore, we

see that

j=1

Pt
Then, P F(E)Pry) = F(E) Py, holds. This implies that
P F(E) = (F(E)Piry)* = (Pry) F(E) Pgy))*
= Py F(E) Py = F(E)Pryy
Therefore, the proof is completed. W

Postulate 2. Let ¢ be a state of a system S in a Hilbert space V. Let
(X, %, F) and (X, %, F') be observables in V such that

P(F,¢:)F(E) =P F'(E) (VEe %) (4)

where P, and P ,, are defined in Lemma 1. If we know that the “true”
value of the observable (X, %, F) for a system S is x, (€ X), then we can
believe that the “true” value x, (€ X) of the observable (X, &, F') for this
system S is the same Xx,, that is, x; = x,.

Remark 2. Without this postulate, our arguments in this note are
essentially possible (see Remark 5). However, we believe that this postulate
must be assumed in quantum mechanics if we cannot find any experiment
that is incompatible with Postulate 2.

Next we mention Postulate 3, which is very close to our main Postulate
4. For this, we must study simultaneous measurements.
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Write F=~, F' if Pgy,F(E)= Pz 4 F'(E) holds for all E€ %. Then,
the relation =, is clearly an equivalent relation. Also, note that F~= , F'
implies that P gy, = Pg 4. Let ¢ be a state of a system S in a Hilbert space
V. Now we shall consider the simultaneous measurement

M=((Z"/”, M),fl:Z_)Xlaf2: Z_>X2)

of observables (X, %,, F,) and (X,, %,, F,) for a system S with a state ¢
(briefly, with respect to ), that is, M has the property that there exist
projection-valued probabilities M, and M, on Z (with a o-field ) such that

M=, ,M=,M, (5
for each i=1, 2,
fi: Z > X, is a measurable function such that
M(f7Y(E))=F(E,) for all Z;¢ %, (6)

The reason that M is called a simultaneous measurement is as follows:
if we know the “true” value z of the observable (Z, #, M) for this system
S, then we can believe, by Postulate 2, that the “true” value of observables
(Z, M, M;) and (Z, M, M,) for this system S is the same z Therefore, we
can know, by Postulate 1, that the “‘true” values of observables (X, %, F})
and (X,, %,, F,) for this system S are f;(z) and f,(z) respectively.

Assume the existence of a simultaneous measurement

M=((Z9 '/%s M),f1:Z—>X1,f2:Z">X2)
of observables (X, #,, F,) and (X,, %,, F>) for the system S. Then, since
Porioy= Popa, ) = P, 0y, We see, by Lemma 1, that
Fx(EJFz(Ez)P(M,w): Ml(f;l El))MZ(fZ_I(EZ))P(M,w)
= M(fl_l(El) r\fz_l(Ez))P(M,lp)
= Fo(2) F,(E1) Py (VE, e #,VE,e %) (7)
so we also see, by (2), that
Fi{(E) F(E,)¢ = Fy(E,) F,(E))¢ (VE, e #,,VE,e &) (8)

Namely, observables (X, %,, F,) and (X,, %,, F,) commute with respect
to ¢. On the contrary, from (8), we can construct a typical simultaneous
measurement ((Z, #, M), f: Z - X, x X,) of observables (X,, %, F;) and
(X5, %,, F,) with respect to a state ¢ as follows. Put (X!, F))=(X;, %)
(i=1,2). Define Z=(X,xX,)uX;uX} and M =‘“the smallest o-field
that contains &, X %,, ¥ and %,.” Put P f, ) = “the projection on a
smallest closed subspace that contains {F,(Z,)F,(E,)¢ |2, %, , B, F.}.”
By the same arguments in Lemma 1, we can see, from (8), that
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P, ) Fi(ED F(Ey) = F(E) Fi(E ) Pir, 5y ) (YE € F1, VE, € &,). Then,
we can uniquely define the projection-valued probability M; (i=1,2) on
A satisfying that, for each i=1,2,

M(EIxEZ)ZP(FI,Fz,w)Fl(El)FZ(E2) (VE, e #,,VE,; e &) 9)
M(E) = —Pg, rp)FE) (VEEeF) (10)
M(E)=M(E})=0 (VE;e %;,VE € (11)

Define fi(x;, x;) = x; [V(x;, x2) € X; X X5], fi(x]) = x| (in € X}), and

filxd) =% (Vx2e X3),  fa(x1) =y, (¥x1€ X7)
where x, and y, are fixed constants in X; and X,, respectively. Take M
such that M =~ , M,. Then, ((Z, M, M), f: Z > X, x X,) is clearly a simul-
taneous measurement of observables (X, %,, F,) and (X,, %,, F,) with
respect to a state ¢.

Let ¢ be a state of a system S in a Hilbert space V. Let
M[=((Z 4, M), f: Z~ X x Y)] be a simultaneous measurement of observ-
ables (X, %, F) and (Y, ¥, G) with respect to a state . We see, by Axiom
0, that the probability that z (€ Z), the measurement value of the observable
(Z, M, M) for a system S with a state ¢, belongs to a set f '(ExI) [i.e.,
the probability that f(z)e ExI'(c X x Y)] is given by (¢, M(f (Ex
My [=(¢, F(E)G(T)¢)yv]. So, the conditional probability u,(fy(z) e

I'|f,(z) = x) that f,(z), the second component f(z), belongs to a set I'( € 4)
when we know that fi(z) = x is given intuitively by

(g, M(f T (ExD)¢)y
S, M(f T E X Yy

_ o B FEGDUy
==l (W FEW)y

Notice that u, (f5(z) eT|fi(z) = x) [or w1y (x, I')]is independent of the choice
of (Z, M, M) and f From a mathematical viewpoint, we must prepare the
following definition:

Definition 1. Let ¢ be a state in a Hilbert space V. Let (X, %, F) and
(Y, ¢, G) be commutative observables with respect to ¢ in V. Deﬁne a set
CP(¢g; (X, & F), (Y, 9, G)) of all conditional probability wu,[u,(x,T), or
more precxsely me(x, T (X, &, F), (Y, % G))] that satisfy the following
conditions:

po(fo(2) €T |fi(z) = x) = lim

(12)

9. ForeachI'(€ 9), u,(x,T) is #-measurable as a function of x and
O=p,(x,T)=1,
10. For each x (€ X), u,(x, -) is a probability measure on (Y, 9).
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11. For each %-measurable function f: X >R and 'e ¥,
j SO, F(dX)G(F)¢)v=Lf(X)/-L¢(x, )Xy, F(dx)¢yy  (13)
X

Notice that the existence of u, [i.e., CP(¢; (X, %, F),(Y, 9 G))# ] is a
well-known fact in probability theory under some conditions (for example,
Y is a complete separable metric space and ¥ is its Borel field (see, for
example, Ash, 1972)). Also, the uniqueness in the following sense is assured:

12, If wy, € CP(¢; (X, &, F), (Y, 9, G)), then there exists a null set
Ne Flie., (4, F(N){¥)y =01 such that p(x, T) = p(x,T) forall xe X — N
and I'e 4.

This is easily shown in what follows. Let {I'?|T?c Y,i=1,2,...} be as
defined in condition 8. Substituting I'=T"; in (13), we see that, for each i
there exists a null set N; [i.e., (¥, F(N,)¢)y, =0] such that u,(x,T;)=
2(x,T;) for all xe X — N,. This implies that u,(x, T';) = u.(x,T;) for ail
i=1,2,...,and all xe X —{Ji2, N,. Also, clearly, (¢, F(_™, N)¢)y =0.
Therefore, condition 12 holds.

Of course, these above arguments are rather ordinary. However, we
now assume the following Postulate 3, which requires that the conditional
probability u,(x,T') is effective not only when the simultaneous measure-
ment of (X, &, F) and (Y, %, G) for a system S with a state  is taken, but
also when the measurement of an observable (X, %, F) for a system S with
a state i is taken.

Postulate 3. Let i be a state of a system S in a Hilbert space V. Let
(X, %, F) and (Y, 9, G) be commutative observables with respect to ¢ in
V such that CP(¢; (X, % F),(Y, %, G))# . Then, there exists f,€
CP(y; (X, F, F), (Y, 4, G)) satisfying that, if we know that the ““true” value
of the observable (X, %, F) for this system is x, (Vx,€ X), then we can
believe that the probability that y, (& Y), the “true” value of an observable
(Y, %, G) for this system, belongs to a set I' (€ 9) is given by 4,(x,,T)

We believe that there does not exist any experiment that is incompatible
with Postulate 3, if Postulate 2 holds. In order to examine Postulate 3, we
must use the simuitaneous measurement of (X, %, F) and (Y, ¥ G) with
respect to ¢. However, any simultaneous measurement always assures (12).
So, we can not find any experiment incompatible with Postulate 3.

Remark 3. Note that Postulates 1 and 2 are special cases of Postulate
3. Let (X, %, F), (Y, 9 G), and f be as defined in Postulate 1. It is clear
that (X, %, F) and (Y, 9, G) commute, since it holds that F(E)G(I") =
F(E)F(f(T)=F(f (N)F(E) = G(I')F(8). Define ji, by

he(x, T)=1[f(x)eT], =0[f(x)£']
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Then, it clearly holds that 4, € CP(y; (X, &, F), (Y, 4, G)). Also, we can
similarly see that Postulate 2 is a special case of Postulate 3. Therefore,
Postulates 1 and 2 should be understood in the sense of Postulate 3.

Now we shall attempt to extend Postulate 3 to the general case, that
is, the case without the assumption that (X, #, F) and (Y, %, G) commute
with respect to .

Let ¢ be a state of a system S in a Hilbert space V. Let (X, %, F) and
(Y, 4 G) be observables in V. Put

Fh o ={E € F|G()F(E)Pry,= F(E)G(D) P4Vl € 9)}

Itis clear that Fly.¢ g, is a o-subfield of F and (X, Fy 4.6y, F)and (Y, 4, G)
commute with respect to ¥. Also, itis clear that @ e Fy. goand X € 972’3/,@,0) s
then LG/;;//Y’(g,G) # @

Suppose that CP(y; (X, Flyv.ua), F), (Y, % G))# . Note that this
assumption is very weak (Ash, 1972). Assume that x, (€ X) is the “true”
value of the observable (X, %, F) for a system S with a state . So, since
amap f: (X, F)> (X, gf’(y,@,c)) such that f(x) = x (Vx e X) is measurable,
we can, by Postulate 1, believe that the “true” value of an observable
(X, Flv.4), F) for this system is the same x. Also, note that (X, Flv. 5.6y, F)
and (Y, 9 G) commute with respect to . So, applying Postulate 3, we can
know that the probability wu, (x,T: (X, Flv«c), F), (Y, 4, G)) that y (€ Y),
the “true” value of an observable (Y, 9, G) for this system, belongs to a
set I' (€ ¥) when we know x (€ X), the “true” value of the observable
(X, F!y.«.c), F) for this system. Therefore, we have the following postulate.

Postulate 4. Let  be a state of a system S in a Hilbert space V. Let
(X, %, F) and (Y, 9, G) be observables in V such that

CP(y; (X, g;g/y,@,c), F),(Y,%6,G)#J

Then, there exists &, € CP(; (X, Flyv.u0), F), (Y, 4, G)) satisfying that, if
we know that the “true” value of the observable (X, %, F) for this system
S is x,(V,€ X), then we can believe that the probability that y, (€ Y), the
“true” value of an observable (Y, ¥, G) for this system S, belongs to a set
I (e%)is given by i,(x,,T).

Now we have the following main axiom.

Axiom 2 (Generalization of Axiom 1). Let ¢ be a state of a system S
in a Hilbert space V and let (X, %, F) and (Y, 4, G) be observables in V.
Let u, be any element in CP(y; (X, Flvac), F), (Y, 4 G)). If we get
%o (€ X) by the measurement of the observable (X, &, F) for this system
S, then we can believe “almost surely” that the probablllty that y, (€ Y),
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the “true” value of the observable (Y, ¥, G) for this system S, belongs to
aset I' (€ %) is given by pu,(x,,T)

Remark 4. We must comment on the term ‘‘almost surely” in this
axiom. Of course, if u, =&, (Where g, is defined in Postulate 4), we can
say, by Postulate 4, that “we can believe (surely) that ...” in Axiom 2. On
the contrary, if w,(x,,T)# fi,(x,,T), then the judgement in the above
axiom is not true. However, it holds, from (24), that there exists a null set
Ne Fly g lie., (¥, F(N))y =0] such that £,(x,T)=pu,(x, ) for all
xe X — N and I'e 4 Also, it is clear, from Axiom 0, that the probability
that x, (€ X), the value obtained by the measurement of the observable
(X, #, F), belongs to N is 0 [i.e., (¢, F(N)¢)y =0]. Therefore we can
conclude that the judgement in Postulate 4 is true “almost surely.”

Now we shall show that the “errors” of an approximate simultaneous
measurement

M [=(Ka v, (Xa 9;, F):fz (f;),fls e :fN—l))]
for Ag, ..., Ay_, on a state u in a Hilbert space H can be naturally defined

under our interpretation. Before this, we must prepare the following
postulate.

Postulate 5. Let H and K be Hilbert spaces, and let V be a tensor
Hilbert space of H and K, thatis, V= H® K. Let (Y, ¥, G) be an observable
in H. Note that (Y, Y, G®1I) is an observable in V where (GR I} IN®
I(VT'e ) and I isanidentitymapon K. Letue H,ve K (JJlul|lg =|v||x=1)
and put ¢ = u®v. Then:

(i) If we know that the “true” value of the observable (Y, ¥, G) with
respect to u is yo (€ Y), then we can believe that the “true” value
of the observable (Y, ¥, G®I) with respect to u®v is same
Yo (€Y).

(ii) If we know that the “true” value y,(€Y) of the observable
(Y, 4, G®I) with respect to u® v is y, (€ Y), then we can believe
that the “‘true” value of the observable (Y, ¥, G) with respect to
u is same y (€ Y).

Let H be a Hilbert space. Let Ay, Aq,..., Ax_; be self-adjoint
operators (i.e., physical quantities) on a Hilbert space H. Let u be a state
in H. Note that an approximate simultaneous measurement M=
(K, v,(X, % F),f=Ufo,fi,---,fn-1) for Ag, Ay, ..., Ay_; with respect
to u is equivalent to a simultaneous measurement (X, % F),f=
(fo, fi,-- -, Sn-1)) for Ao,Al,...,/iN_l with respect to u®v in H®K,
where Ak =[x fi(x)F(dx). In this measurement M, when we get x, (€ X)
by the measurement of the observable (X, %, F) with respect to u® v, we
temporarily regard f,.(x,) as the “true” value of A, ® I with respectto u®v
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(so, by Postulate 5, the “true” value of A, with respect to u). Also, when
we get x, (€ X) by the measurement of the observable (X, &, F) with respect
to u® v, we can believe “almost surely” that the probability that y, (€ R),
the “true” value of an observable A, ®I =(R, B, E, ;) for this system S,
belongs to a set I' (€ B) is given by tue, (X0, [ (X, Fiser, F), Ac®I).

Therefore, it is natural to define 8y(Ag, u; X,), the kth error when we
get x, by the measurement of the observable (X %, F) with respect to u® v,
by [ix |fi(%0) = &P tumo (X0, d€)]"?. Also, since the probablllty that x,€ E is
given by (u® v, F(E)(#®v)), it is reasonable to define Sy ( Ay, u), the kth
average error in the measurement M with respect to a state u (€ H), by
[,[X ' Sm(Ag, u; xo)l2<u ®v, F(dxo)(u® U)>]1/2-

Therefore, we get the following definition.

Definition 2. Let Ay, A,,..., Any_, be any physical quantities (i.e.,
self-adjoint operators) in a Hilbert space H. Let

M= (K, v, (X, # F),f=(fo, fi,.- .. fn-1))

be an approximate simultaneous measurement of Ay, A,,..., Ay, in H.
Then, 8y (Ag, u; x), the kth error when we get x by this measurement M
with respect to a state u (€ H), is defined by [Jr | fi(%) — £ ttus, (x, d€)1V?
where

fugy(x, T) € CP(u®u; (X, Fadr, F), A®I)

Also, 6y Ay, u), the kth average error in the measurement M with respect
to a state u (€ H), is defined by

[Ix I‘SM(Ak, u, x)lz(u®v, F(dx)(u@v))]l/z

Also, {6m(Ay, u),]k=0,1,..., N—1} is called an average error in the
measurement M with respect to a state wu.

Now we have the following proposition.

Proposition 1. Let Ay, A,,..., Ay_; be any physical quantities (i.e.,
‘'self-adjoint operators) in a Hilbert space H. Let

M=(K, v, (X, & F),f=(fo,fr,-- -, [n-1)

be an approxigpate simultaneous measurement of Ay, A,,..., Ay in H.
Assume that A, [=jxfk(x)l_:(dx)] and A, ®I commute for each k. Then,
the equalities Ay (Ag, 4) = 6p(Ag, u) (k=0,1,..., N—1) hold.

Proof. Fix k. Put A,®I=(R, B, E4 ). And put
9‘72?(%1 = IEA@I(B)F( YP (Fuwy = F(E )EA@I(B)P(F.;@:J)(VBE B)}
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By the commutativity of Ak and A,®I, fi.: X->R clearly is an
%Z?(g,-measurable function. Hence, we see, by (23), that
|5M(Ak’ u)|2

~

=| (8m(Ax, u; x))u®v, F(dx)(u®v))

JX

= j () = & ruwu(x, dEX U@ v, F(dx)(u®v))

) | fie(%) — & ks (X, dENU® v, F(dx)(u®v))

JR Lx,@,‘;f’é,

J |fie(x) — éPd(u® v, F(dx)Eper(dé)(u@uv))
JRIxF4ED

IAM(Aka u)|2 -

Here we obtain the following theorem as a corollary of Theorem 1 and
Proposition 1.

Theorem 2. Let A, and A, be a pair of conjugate observables in a
Hilbert space H (i.e., symbolically, AyA; —A;A,=1ih). Let

M= (K, v, (X, % F),f=(f,/))

be an approximate simultaneous measurement of A, and A, satisfying the
additional condition 5. Assume that A, [=[ fi(x)F(dx)] and A,®I com-
mute for each k (k=0,1). Then, the following inequality holds:

S_M(AOa u) - Sm(A;, u)= h/2 (14)

forallu e H (||u]| 4 = 1), where the left-hand side of this inequality is defined
as =0 if Ap(Ay, u) =00 for some k.

If we take a standpoint within the interpretation proposed in this
section, it is natural to consider that inequality (14) is just Heisenberg’s
uncertainty relation. However, if we study it within the Copenhagen inter-
pretation, Theorem 2 does not seem to be suitable. Because there is
no reason within the Copenhagen interpretation to define the error
{6m(Ax, u)| k=0, 1} as mentioned in Definition 2.

Remark 5. We are afraid that there may be various opinions about
Postulate 2. For example, some physicists may assert that Postulate 2 holds
only when Pg,,= I However, it should be noted that, even if we agree to
this assertion, our arguments (and results) in this note are essentially
effective. Also, other physicists may assert that Postulate 2 holds only when
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Pryy=F(X — U{E): F(E)y =0}), where {E7}:2, is defined by condition
8. Of course, even in this case, our arguments (and results) are essentially
effective. Our standpoint is that Postulate 2 should be assumed in quantum
mechanics if there does not exist any experiment incompatible with it.

3. APPLICATION TO ANALYSIS OF A TRAJECTORY
OF A PARTICLE

The interpretation proposed in the previous section seems to be very
convenient if we want to discuss quantum mechanical theory. As a typical
example, we shall analyze the trajectory of a particle (like “Wilson cham-
ber”’) under this interpretation. It will be done by developing ideas of
Arthurs and Kelly (1965) and She and Hefiner (1966).

We shall consider a particle S in the one-dimensional real line R, whose
state function wu(t,-)[e H=L*R), —co<t<oo] satisfies the following
Schrodinger equation with a Hamiltonian #=—(#>/2m) ¢*/9x":

du(t,x) iz_ u(t, x)

h ot 2m  ax? = (2u)(t) (—oo<t <) (15)

u(0, x) = u(x)

Put #>0 and N =2 (integer). Let A be a position observable in H, that is,
(Au)(x) = xu(x).

Now we consider the approximate “‘simultaneous” measurement M of
the positions of a particle S at time #, =06k (k=0,1,2,..., N~1). Note
that (15) is equivalent to the following Heisenberg kinetic equation of the
time evolution of the observable A, (—oo<t < c0) in a Hilbert space H with
a Hamiltonian H

dA,

I =¥A, — AKX (—oo<t < 0) (16)

Therefore we can consider that the measurement M is equivalent to the
approximate simultaneous measurement of self-adjoint operators {Agl o
for a particle S with a state u(x) =u(0, x). An easy calculation shows that

A=U_AU=U_xU=x+7"—- (17)

where the one-parameter unitary group U, ( =e T is represented by

m \'?(® im )
2m.m> J exp[%(x—f)]u(@d& (18)

-0

(Uu)(x) = u(, X)=(
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Here we see easily that
h
A,AS—~ASA,=;1~(t—S) (t,seR) (19)

Let V=HRK=H® Q@Y H)=®NJH = L*(R") and U, =® ;' U,, that
is, for all y € L*(R"),

R m N/2
U,z//(xo,xl,...,qu):(Zm.ht) J-RN (th Z |Xk | )
Xw(fo,"'ygNAl) dé‘o""’dgNAl

(20)
Let ap, (k,n=0,1,..., N—1) be real numbers such that

N-1
L i, =0(k#1)

n=0

and a,,=1(Vk). Define self-adjoint operators Aek (k=0,1,..., N—1)in

V[=L*(R™)] by
N-1
Aﬂk'— Z akn(xn_‘—ﬁ.e—lf i ) (21)
n=0 im ox,

It is clear that Aek (1c=0, 1,2,..., N—1) commute. Also, for each k (k=
0,1,2,..., N—-1), Ay and A, @ I[=x,+(hok/im) 3/5x,] commute. We
see, by (17), that

N-1

AAGk = 0~6k( x> aknxn) Uek, Ag®1I = 0—6kx006k (22)

n=0
Then, the spectral measure E,,k of Aek [i.e., Aek = fx )\Eek(d/\)] is represented
by

N-~1

ﬁ9k<a>=0_ekx(a; Y ak,,x,,) Un (VEeB) (23)
n=0

where x(E;y)=1(yeE), =0 (;}IE =), ie., a characteristic function of E
From the commutativity of {Ex}n-e (ie., {Aa}i d), we can define an
observable (X, % F)=(R™, B", F) in V where

N-1 N
F(EoxE X+ -xEn_1)= kl:lo Ea(Ex) (24)
Put u(x,) = u(x,) and

V(X1 Xnog) = 01(%0) - Onog(Xno) € LPRY)(=K) (o]lc =1)
such that

J Xi|ve () dxk_J' B (%) dv(xk)

dx. =0, (k=1,2,...,N—1)
(25)
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Put fi: X (=RV)>R(k=0,1,..., N—1) such that f; (x,..., Xn_;) = Xx.
Note that Ag = [x fo(x) F(dx).

Now we shall show that M=(K, 0,(X, % F),f={fo,...,fn-1))
defined above is an approximate simultaneous measurement of {Ag}r o
in H. The condition 1 (in the Introduction) is clear. Also, we see, by (25),
that, for any u € H,

(u®vo, Aek(“®”)>ﬂ®x
N1 ( #wok 9
X, T/

={Ugl1* " * Un-1, 2, Orn
n=0

hok o N1 hok &
= Qo \ U, x0+ . Uy + Z Qpn \ Uns + Uy
im a3x, ne1 im 0x,

< ( ok o ) >
={ U, | Xo+——— 1
im 0xg

=(u, Apil) (26)

which implies that D(Ag) = D,(Ag), so conditions 2 and 3 hold.

Note that the probability that the measurement value X = (JEO s ey XNo1)
obtained by the measurement M belongs to a set EgxE; X - XExn_, is
given by

)uﬂvl ©c Unoa)

im 0x

<u®v, N]jl Eek(Ek)(u®v)> (27)

H®K

Of course, this measurement value X =(%,,..., Xy_;) represents just the
discrete trajectory of a particle S, though it includes errors.

Using Proposition 1, we can calculate the average error { Sy (Agy, 4)}re
in the approximate simultaneous measurement M as follows:

gM(A9k5 u)
- ”[Aok ‘A9k®1](u®v)”H®K

N1 hok o
2 Qun | Xn Uy * " " Un—y
n=1

im 9x,

U 5 e iin)
R S \ X T 8x,,

2
X (%) - - - UN—1(xN~1)] dxy - - de—1:|

N1 hok o 2 1/2
[Z |akn|2J ’(x,ﬂr.— )vn(xn) dxn] (28)
n=1 R m ox,

Il

1/2

Il
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Of course, if necessary, it is possible to obtain the error {Sy(Ae, u; ) o

when we get the measurement value X = (%, ..., X¥5_;). However, it seems

to be complicated in general since Fiow: cannot be decided easily. So, it

is convenient to use FX={R*xZIxRN*"1|Hec B} as a substitute for
Fu2%1. Since (X, F*, F) and Ay ® I commute, we see that

|8 A, 1, %)
= J /e (%) = EP puso(x, dE; (X, FO, F), A ®1)

:J l_ 512 lim (u®v, F(RkXExRN‘k_l)EAk@)I(df)(u@U))H@K
® ==z (u®v, FR*XEXR*XRY * ) u® ) yox

- i 490 En(B)U 0 (i = x0)* U4 @ 0)) ok
B~ {x} (u®v, Ex(E)(u®v)) ok

~ lim ({J 1% —xol L Dot (4 ® )]
£->0+ ifk*EI:;f} e Xn| <&

X (Xg, ..oy Xn_n) dxg - devl}

-1
x {L N-1 l[ Ug(u®v)}(x,, .- ., xN—1)12 dxy - de—l} )
Xy —2p=0 QpnXn|<e
k (29)

We think that it is sufficient to use 8p(Agk, #, X) [or more roughly
Sm(Agr, u)]instead of 6y (A, u, £) in most cases [though we have no proof
that 6py( Agk, U, X) = S Ak, 4, X)}]. Note also that we can calculate (27)-(29)
numerically. Therefore, what is important is that we can make a computer
simulation about this discrete trajectory (X,,..., Xy_;) of a particle S. Of
course, this measurement M includes errors. However, we can estimate it!

Also, if we choose u(x)=1/[2(b~a)]"? for xe(—b, —a)u (a, b), =0
otherwise, we can make a computer simulation for a discrete trajectory of
the two-slit experiment.

4. CONCLUSIONS

In this note, we proposed an interpretation in nonrelativistic quantum
theory. Under this interpretation, we clarified that the uncertainties (i.e.,
Ag and Ap) in Heisenberg’s uncertainty relation can be characterized as
(average) errors in an approximate simultaneous measurement. Also, this
interpretation seems to be very convenient for a discussion of quantum
mechanical theory. As an example, we analyzed the (discrete) trajectory of
a particle, and proposed a computer simulation for this trajectory.
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