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Interpretation of Nonrelativistic 

We propose an interpretation of nonrelativistic quantum theory which can be 
considered a generalized Copenhagen interpretation. The uncertainties (i.e., Aq 
and Ap) in Heisenberg's uncertainty relation Aq. Ap _> ~/2 can be characterized 
as (average) errors in an approximate simultaneous measurement if the interpre- 
tation proposed here is accepted in nonrelativistic quantum mechanics. Under 
this interpretation, the (discrete) trajectory of a particle (like "Wilson chamber") 
is significant enough. We propose to analyze this trajectory numerically. 

1. I N T R O D U C T I O N  

Recently, we discussed Heisenberg 's  uncer ta inty relation Aq.  Ap -> h / 2  
(Ishikawa,  1991), gave a mathemat ical  definition o f  Aq and Ap, and proved  
a certain inequali ty which could be considered as a mathemat ical  representa- 
tion o f  Heisenberg 's  uncertainty relation. We ment ion some o f  the results 
obta ined in Ishikawa (1991) in order  to exhibit our  motivat ions in this note. 

Let H be a Hilbert space with the inner  p roduc t  ( . ,  ')H. Let A0, 
A ~ , . . . ,  AN-~ be any physical  quantities (i.e., self-adjoint  operators)  in a 
Hilbert space H. A quarter  M = ( K, v, ( X,  ~,  F ) , f  = ( fo , .  . . , fN- t ) )  is called 

{Ak}k=0 in H if it satisfies an approximate  s imul taneous  measurements  o f  N-~ 
the fol lowing condit ions:  

1. v is an element in a Hilbert space K such that ]lv[[K = 1 ,  and 
(X, o~, F)  is a project ion-valued probabil i ty space in a tensor  Hilbert  space 
H |  and J~: X ~ R : "  is a measurable  map.  

2. Put Ak = S x f k ( x ) F ( d x ) , ( k  =0 ,  1 , . . . ,  N - l ) ;  then, for each k, a set 
D,,(Ak) (-={u ~ H :  u |  D(Ak) ,  the domain  o f  Ak}) is a core o f  Ak, i.e., 
Ak is essentially self-adjoint on D,,(A~). 
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3. For each k, (u, AkU)H = (U | V, ,4k(U | V))H| (U ~ Dv(,4k)). 
Furthermore, we assume that M satisfies the following additional 

conditions: 
4. For each k, ( -4g - -AkQI )  on D ( A k ) c ' ~ D ( A k |  has the unique 

self-adjoint extension [-4k -- Ak | I]. 
c~ V C C-~N-I D(,4k)} is a dense set in a Banach space 5. A s e t { u c H : u ~  i Ik=O 

H| (----{u E H:  u |  v ~ f-') ~v_--ol D([Ak - -Ak@l])})  with the norm 

Ilull.o ---Ilull,~ + E II[ek--Ak| 
k = 0  

Note that the existence of  an approximate simultaneous measurement 
f "A ,N-1 o "t klk=o satisfying conditions 4 and 5 is proved in Abu-Zeid (1987) [or 

Ishikawa (1991) in detail]). 
Now the unfitness [in Ishikawa (1991) we did not dare to call it "er ror"  

or "uncertainty" since its physical meaning seemed to be not clear] 
{AM(Ak, U): k = 0 , . . . ,  N - I }  of  an approximate simultaneous measure- 
ment M for N-a {Ak}k= o on a state u ( l lu l l .~  1) is defined by AM(Ak, U)=- 
II r,ik - mk | I] (u | v)I1.| if u | v ~ D([Ak -- A k | I ] )  = o| otherwise. We 
obtained the following theorem in Ishikawa (1991). 

Theorem 1. Let A| and A1 be a pair of conjugate observables in 
a Hilbert space H (i.e., symbolically, A o A 1 - A i A o = i h ) .  Let M =  
( K, v, ( X, ~T, F ) , f  = (fo,./'l) ) be any approximate simultaneous measurement 
of A| and A~ satisfying the additional conditions 4 and 5. Then, the following 
inequality holds: 

AM(A0, u ) .  AM(A1, U) >--- h /2  (1) 

for all u c n( l l u l l .  = 1), where the left-hand side of (1) is defined as =oo 
if AM(Ak, U) = Ce for some k=0,  1. 

Special and simple cases of this theorem were also investigated in Ali 
and Emch (1974), Ali and Prugove~ki (1976), and Busch (1985). 

If  we take a standpoint within the so-called "Copenhagen interpreta- 
tion," we believe that inequality (1) is just Heisenberg's uncertainty relation 
(though there is a possibility to improve the conditions 4 and 5. And we 
believe that the relation between the EPR argument (Einstein et al., 1935; 
Selleri, 1990) and Heisenberg's uncertainty relation becomes clear in 
Ishikawa (1991). However, the observations in Ishikawa (1991) are not 
necessarily physical, but rather mathematical. Hence we think that the 
physical meaning of the unfitness {AM(Ak, U): k =0,  1} is still not clear. 
Furthermore, we think that it is necessary to discuss the matter from various 
viewpoints in order to conclude that the inequality (1) is a mathematical 
representation of Heisenberg's uncertainty relation. 
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It is natural to consider that the "error  A" in the (approximate) 
measurement should mean the (average) distance between the " t rue" value 

and the (approximate) measurement value x, i.e., A = d(x, ~). Also, the 
" t rue"  value usually means the value obtained by the (accurate) measure- 
ment in the Copenhagen interpretation. However, if we think in this way, 
the uncertainties (i.e., Aq and Ap) cannot be characterized as "errors." 
Because the Heisenberg uncertainty relation assures that any accurate 
simultaneous measurement of  the position and momentum does not exist, 
it is impossible to know the " t rue" value ~; then we cannot define the 
"errors"  A(q) and A(p). So, in Ishikawa (1991) we did not call AM(Ak, U) 
"error ,"  but "unfitness." We think that it is suitable to call it "unfitness" 
if we study it under the so-called Copenhagen interpretation. However, we 
think that the physical meaning of  the "unfitness" {AM(Ak, U) [k = 0, 1} will 
never become clear within this interpretation. Therefore, in Section 2, we 
propose an interpretation in nonrelativistic quantum mechanics which can 
be considered as a generalized Copenhagen interpretation. Under this 
interpretation, we define the "er ror"  {~M(Ak, u) lk  = 0, 1} of  an approximate 
simultaneous measurement M = ( K, v, ( X, o%, F), f =  (fo,fi  ) ) of Ao and A1 
and show that {gM(Ak, U)I k = 0, 1} and {AM(Ak, u)]k = 0, 1} are equal under 
some conditions. And we show that an analogue of Theorem 1 [i.e., 
gM(A0, U)~M(A2, U) >-- h/2] holds. Also, our interpretation seems to be very 
convenient for discussing quantum mechanical theory. As an example, in 
Section 3 we analyze the so-called "Wilson chamber"  under this interpreta- 
tion. We show that there is some reason to consider the (discrete) trajectory 
of  a particle. Furthermore, we propose to analyze this trajectory numerically. 

2. AN INTERPRETATION AND UNCERTAINTIES 

In this section, we first propose an interpretation in nonrelativistic 
quantum mechanics. Let V be a Hilbert space. A projection-valued probabil- 
ity F on a measurable space X (with a o--field ~ )  in a Hilbert space V is 
defined by the following conditions: 

6. For every E c o~, F ( E )  is a projection in V such that F (O )  = 0 and 
F ( X )  = I, where 0 is a 0-operator and I is an identity operator in V. 

7. For any countable decomposition { ~ j } j = l  of E, (Ej, "~ 6 o~), F ( E )  = 
oc~ 

~j=l F (~ j )  holds, where the series is weakly convergent. 
8. ~ can be generated by a countable family ~-i,-il~~176 X, i =  1, 2,.  . .}. 

Also, a triplet (X, g,, F )  is called a projection-valued probability space 
in V. Note that the condition (8) is rather weak. For example, if X is a 
complete separable metric space and f f  is its Borel space, then (8) is clearly 
assured. 
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In this note, we use the projection-valued probability spaces as a 
mathematical model of observables. So, we shall chiefly call a projection- 
valued probability space an observable. Note that any self-adjoint operator 
A in V has the unique spectral representation A=~R )tEa(dh); then we 
sometimes identify a self-adjoint operator A with an observable (R, ~ ,  EA), 
where ~ is a Borel field on R, so we sometimes consider A = (R, ~ ,  EA). 
Projection-valued probability spaces (or more generally, positive operator- 
valued probability spaces) are investigated in Davies (1976), where a positive 
operator-valued probability space is called an observable. However, we 
shall here call a projection-valued probability space an observable, since 
we do not use positive operator-valued probability spaces in this note. 

Axiom 0 (Born's probabilistic interpretation). Let qJ be a state of a 
system S in a Hilbert space V and let (X, ~, F)  be an observable in V. 
Then, the probability that Xo ( e X) ,  the measurement value obtained by the 
measurement of the observable (X, ~, F)  for this system S, belongs to a set 

( e ~ )  is given by (~0, F("~)qJ)v. 

Of course, this axiom is fundamental. The following axiom requires 
that measurement v a l u e ~ " t r u e "  value. 

Axiom 1 (Measurement value and " t rue"  value). Let ~b be a state of  
a system S in a Hilbert space V and let (X, ~, F )  be an observable in V. 
If  we get Xo ( e X)  by the measurement of the observable (X, ~, F)  for this 
system $, then we can believe that the " t rue"  value of  the observable 
(X, if, F )  for this system S is the same xo. 

All physicists will agree to this axiom. However, our interpretation 
does not assert that measurement valueC:>"true" value. Of course, if we 
think so, we must define " t rue"  value. This will be done implicitly through 
Postulates 1-5 and Axioms 1 and 2. In this sense, Postulates 1-5 can be 
regarded as the definition of " t rue"  value. Before we mention our main 
Axiom 2, we must prepare Postulates 1-4. 

Postulate 1. Let ~0 be a state of  a system S in a Hilbert space V and 
let (X, ~:, F )  and ( Y, ~, G) be observables in V such that there is a measur- 
able map f :  X ~ Y satisfying that F ( f - ~ ( F ) ) =  G(F) (VF e ~). If  we know 
that the " t rue"  value of  the observable (X, ~,  F)  for a system S is Xo ( e X) ,  
then we can believe that the " t rue"  value Yo ( e Y) of  the observable ( Y, ~, G) 
for this system S is f(xo), that is, Y0 =f(Xo). 

Remark 1. Using this postulate, we can define the simultaneous 
measurement [in the ordinary sense (von Neumann,  1932)] of  commutative 
observables. For example, see the arguments below (5) and (6). Though 
these arguments are mentioned in the general case, the reader can easily 
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find that observations about simultaneous measurements cannot be made 
without Postulate 1. So, we believe that almost physicists will ~igree to 
Postulate 1, if they think that simultaneous measurements (in the ordinary 
sense) of  commutative observables should be possible. 

Before we mention Postulate 2, we must prepare the following lemma. 

Lemma 1. Let 4' be a state in a Hilbert space V (i.e., tp~ V and 
I I+l lv  = 1). Let (X, if, F)  be an observable in V. Put P(F,~,)-"the projection 
on a smallest closed subspace that contains { F ( E ) ~ I E  e ~}",  Then, the 
following hold: 

P(F,C,)~P = @ (2) 

P(F,~)F('~) = F('~)P(F,~,) (VT~ ~ 8~) (3) 

Proof. Clearly, (2) holds. Let q~ e V. Then, for any positive integer n, 
we can take an n decomposition { - j  }j=~ of  X (,,~ e ~ )  and a complex 

n n �9 n n ~ n  sequence {aj )~=~ such that P~F,~6 = h m ~  ~=~ a~ F ( - ~  )& Therefore, we 
see that 

F(E)P(p,j,)4~ = l i m ~  ~ ~ T F ( -  = fq E ; ) ~  ~ P(~,~)V 

Then, P(F.~,)F(E)P(F,~,) = F(E)P(F,~) holds. This implies that 

P(F,~)F(~) = ( F('~)P(F,r = ( P(F,~,)F(~) P(F,~))* 

-- P(F,+)F(E)P(F,~)= F(E)P(~,~) 

Therefore, the proof  is completed. �9 

Postulate 2. Let ff be a state of a system S in a Hilbert space V. Let 
(X, ~, F) and (X, o~, F ')  be observables in V such that 

P(F,~,)F('~) = P(F, 6)F'(~) (V~ c ~)  (4) 

where P(F.~) and P(F',6) are defined in Lemma 1. If  we know that the " t rue"  
value of  the observable (X, @, F)  for a system S is x0 (c  X) ,  then we can 
believe that the " t rue"  value x~ ( ~ X)  of the observable (X, ~, F ' )  for this 
system S is the same Xo, that is, x~ = Xo. 

Remark 2. Without this postulate, our arguments in this note are 
essentially possible (see Remark 5). However, we believe that this postulate 
must be assumed in quantum mechanics if we cannot find any experiment 
that is incompatible with Postulate 2. 

Next we mention Postulate 3, which is very close to our main Postulate 
4. For this, we must study simultaneous measurements. 
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Write F ~ F '  if P(p, , )F(E)= P(v,,)F'(E) holds for all -~ ~ ~. Then, 
the relation ~ ,  is clearly an equivalent relation. Also, note that F = ,  F '  
implies that P~F.+) = P(F',,). Let ~b be a state of a system S in a Hilbert space 
V. Now we shall consider the simultaneous measurement 

M =  ((Z, ~ ,  M),f~: Z + X, , f2:  Z ~ X2) 

of observables (X1, ~1, F1) and (X2, ~2, F2) for a system S with a state ~b 
(briefly, with respect to ~b), that is, M has the property that there exist 
projection-valued probabilities M1 and M2 on Z (with a tr-field d~) such that 

M - ~ , M I ~  ~,M2 (5) 

for each i = 1, 2, 

f : Z  ~ X~ is a measurable function such that 

M , ( f [ ' ( E , ) )  = F,(E~) for all E, ~ if, (6) 

The reason that M is called a simultaneous measurement is as follows: 
if we know the "true" value z of the observable (Z, d/t, M) for this system 
S, then we can believe, by Postulate 2, that the " true" value of observables 
(Z, ~ ,  Ml) and (Z, ~t, M2) for this system S is the same z. Therefore, we 
can know, by Postulate 1, that the "true" values of observables (X1, ~-~, F~) 
and (X2, if2, F2) for this system S are f~(z) and f2(z) respectively. 

Assume the existence of a simultaneous measurement 

M =  ((Z, ~ ,  M ) , A : Z + X I , A : Z . ~ X 2 )  

of observables (X~, ~ ,  F1) and (X2, ~2, F2) for the system S. Then, since 
Pr = PCM,,,)= PCM:,,), we see, by Lemma 1, that 

F,(7~,)F2(~:)PcM,,) = M,(ZT'('~,) )M2(f 2~('~2) )PcM,,) 

= M(f11(~_,) r~f21(~2)) P(~4,+) 

= F 2 ( ~ - 2 ) F , ( ~ - , ) P ( M , , )  (V~'~I ~ ~ , ,  W~2 m ~2) (7) 

so we also see, by (2), that 

ffl(E1)F2(E2) ~b = F2(E2)FI(E~)~b (VE1E ~.~, VE 2 ~ "-~2) (8) 

Namely, observables (X~, ~ ,  F~) and (X2, ~ ,  F2) commute with respect 
to ~. On the contrary, from (8), we can construct a typical simultaneous 
measurement ((Z, ~t, M), f :  Z + X~ x X2) of observables (X~, ~1, F~) and 
(X2, ~ ,  F2) with respect to a state ~b as follows. Put (X~, ~[) --- (X~, ,~) 
(i -- 1, 2). Define Z ~ (X~ x X2) w X'~ w X~ and M --- "the smallest or-field 
that contains o~ x ~ ,  ~ and ~ . "  Put P(v,,v~.,)= "the projection on a 
smallest closed subspace that contains {F~(~I)F2(~2)~b I~l ~ o~,  "~2 ~ ~2}." 
By the same arguments in Lemma 1, we can see, from (8), that 
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P(<.p~.,>F~(~-,)F2(E2) = Fi(E2)FI(.~.,)P(F,,&,,) (VE, e ~ ,  V-~2 e ~2)- Then, 
we can uniquely define the projection-valued probability Mi ( i  = 1, 2) on 
d// sat i s fy ing  that ,  for each i = 1, 2, 

M,(~_, x ~2) = P(~,.F~,,)F,(:m,)F2(~2) (V~, ~ ~ , ,  V~= ~ ~2) (9) 

M,(~;)=(I-P(&,F>o))F~(~) (V~-;e o~;) (10) 

M , ( Z ; )  = M2(---~) = 0 (V_=; �9 ~ ; ,  VZ~ �9 o~ )  (11) 

Define fi(xl,  x2) = xi [V(xl, x2) e X1 x X2], f/(x~) = x~ (Vxl �9 XI), and 

fi(x;)=Xo(VX'2eX~), f i(x~)=yo(VX'leX~) 

where Xo and Yo are fixed constants in X1 and X2, respectively. Take M 
such that M ~ ,  M~. Then, ((Z, ~ ,  M), f :  Z--> X1 x X2) is clearly a simul- 
taneous measurement of observables (X1, o~1, F1) and (X2, ~2, F2) with 
respect to a state #J. 

Let r be a state of a system S in a Hilbert space V. Let 
M [ -  ((Z, 3//, M ) , f :  Z --> X x Y)] be a simultaneous measurement of observ- 
ables (X, ~,  F)  and ( Y, ~, G) with respect to a state 0. We see, by Axiom 
0, that the probability that z ( �9 Z),  the measurement value of the observable 
(Z, eg, M) for a system S with a state ~b, belongs to a set f - l ( ~  x F) [i.e., 
the probability that .f(z) �9 ~ x F ( c  X x Y)] is given by (~p, M(f-l(7~ x 
F))~O)v [= (0, F(r~)G(F)O)v]. So, the conditional probability /x,(f2(z) �9 
FI/ l(Z) = x) that f i(z),  the second component f (z ) ,  belongs to a set F( �9 ~) 
when we know that f l(z)  = x is given intuitively by 

( ~b, M (f-l(7~ x F))~b>v 
~ , (A(z )  �9 r l f , ( z )  = x) = lim . 

z~{x} (O, M(f -~(  ~ x Y))th>v 

(th, F(.~.)G(F)O)v 
= lira (12) 

z-.{~} (th, F(E)O)v 

Notice that/.e,(f2(z) e r If,(z) = x) [or/~, (x, r ) ]  is independent of the choice 
of (Z, ~ ,  M) and f From a mathematical viewpoint, we must prepare the 
following definition: 

Definition 1. Let 0 be a state in a Hilbert space V. Let (X, ~, F)  and 
( 11, ~, G) be commutative observables with respect to 0 in V. Define a set 
CP(O; (X, o~, F), ( Y, ~g, G)) of all conditional probability ~z,[/x,(x, F), or 
more precisely ~ , (x ,F :  (X, ~, F),  (Y, ~, G))] that satisfy the following 
conditions: 

9. For each F ( � 9  ~), tz4,(x, F) is o~-measurable as a function of x and 
0-< ~ ( x ,  F)-< 1, 

10. For each x ( � 9  X) , / z , (x ,  �9 ) is a probability measure on (Y, ~). 
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11. For each ~-measurable function f :  X ~ R and F ~ ~, 

(13) 

Notice that the existence o f /~ ,  [i.e., CP(4~; (X, ~;, F),  (Y, ~, G)) e Q] is a 
well-known fact in probability theory under some conditions (for example, 
Y is a complete separable metric space and ~ is its Borel field (see, for 
example, Ash, 1972))�9 Also, the uniqueness in the following sense is assured: 

12. I f /x l , / z2e  CP(O; (X, o~, F), (Y, N G)), then there exists a null set 
N e o ~ [i.e., (0, F(N)qJ)v = 0] such that/~l(x, F) = tz2(x, F) for all x e X - N 
and F e ~. 

This is easily shown in what follows. Let {F~176 Y, i = 1, 2 , . . .}  be as 
defined in condition 8. Substituting F--Fi  in (13), we see that, for each i, 
there exists a null set Ni [i.e., (~, F(Ni)6)v=O] such that /xl(x, F i )=  
iz2(x,F~) for all x c X - N ~ .  This implies that tx~(x,F~)=/x2(x,F~) for all 

�9 , ~ c o  

i = 1, 2 , . .  and all x X -  Q.J~=I N~. Also, clearly, C0, F ( Q ] ~  N~)O)v = 0. 
Therefore, condition 12 holds. 

Of course, these above arguments are rather ordinary. However, we 
now assume the following Postulate 3, which requires that the conditional 
probabil i ty/z,(x,  F) is effective not only when the simultaneous measure- 
ment of (X, ~, F)  and ( Y, ~, G) for a system S with a state ~b is taken, but 
also when the measurement of an observable (X, :~, F)  for a system S with 
a state 0 is taken. 

Postulate 3. Let ~b be a state of a system S in a Hilbert space V. Let 
(X, ~-, F)  and (IT, ~, G) be commutative observables with respect to 0 in 
V such that CP(tb; (X, o~,F), (Y, ~, G ) ) # O .  Then, there exists / 2 ~  
CP(~; (X, if, F),  ( Y, ~, G)) satisfying that, if we know that the "true" value 
of the observable (X, ~, F)  for this system is xo (VXo~ X),  then we can 
believe that the probability that Y0 ( ~ Y), the "true" value of an observable 
( Y, (~, G) for this system, belongs to a set F ( ~ ~) is given by t2~,(Xo, F) 

We believe that there does not exist any experiment that is incompatible 
with Postulate 3, if Postulate 2 holds. In order to examine Postulate 3, we 
must use the simultaneous measurement of (X, o~, F)  and (Y, ~, G) with 
respect to ft. However, any simultaneous measurement always assures (12). 
So, we can not find any experiment incompatible with Postulate 3. 

Remark 3. Note that Postulates 1 and 2 are special cases of Postulate 
3. Let (X, o~, F),  (Y, ~, G), and f be as defined in Postulate 1. It is clear 
that (X, fro, F)  and (Y, ~, G) commute, since it holds that F ( E ) G ( F ) =  
F(E)F(f-~(F)) = F(f-~(F))F(E) = G(F)F(E) .  D e f i n e / ~  by 

/2~(x, F) = l [ f (x )  ~ r ] ,  =0 I f (x )  ~ F] 
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Then, it clearly holds that f i ,  ~ CP(O; (X, ~, F),  (Y, lq, G)). Also, we can 
similarly see that Postulate 2 is a special case of Postulate 3. Therefore, 
Postulates 1 and 2 should be understood in the sense of Postulate 3. 

Now we shall attempt to extend Postulate 3 to the general case, that 
is, the case without the assumption that (X, ~, F)  and ( Y0 ~, G) commute 
with respect to 0. 

Let q, be a state of a system S in a Hilbert space V. Let (X, if, F)  and 
(Y, q3, G) be observables in V. Put 

Y;(Y,~.G~ = {~ ~ ~[ G(F)F(E)P(F,+)= F(E)G(F)P(r , , ) (VF ~ ~)} 

It is clear that ,~v,~,G) is a o--subfield of ~ and (X, ~'v.~,6), F)  and ( Y, ~, G) 
commute with respect to ~. Also, it is clear that Q ~ ~'v,~,c) and X ~ ~Y,%G), 
then ~ V,%G) r ~.  

Suppose that CP(@; (X, ~-~V,%G), F),  ( Y, if, G)) r ~ .  Note that this 
assumption is very weak (Ash, 1972). Assume that Xo (c  X) is the " true" 
value of the observable (X, o~, F)  for a system S with a state 0- So, since 
a map f :  (X, o~) .  (X, * ~T(y,~,c)) such that f ( x )  = x (Vx c X)  is measurable, 
we can, by Postulate 1, believe that the "true" value of an observable 
(X, ~(v.~.G),~* F) for this system is the same x. Also, note that (X, ~(*y,~,G), F) 
and ( Y, ~d, G) commute with respect to 0. So, applying Postulate 3, we can 
know that the probability/z~,(x, F: (X, 50(v,%c),~* F),  (Y, ~, G)) that y (~ Y), 
the "true" value of an observable (1,7, if, G) for this system, belongs to a 
set F (~ ~q) when we know x (~ X),  the "true" value of the observable 
(X, 5*(v.~.G),~* F) for this system. Therefore, we have the following postulate. 

Postulate 4. Let q~ be a state of a system S in a Hilbert space V. Let 
(X, o~, F)  and ( Y, ~, G) be observables in V such that 

CP(tp; (X, o%(v.~.~),* F), (Y, ~3, G)) # 

Then, there exists ~z+ ~ ~ CP(t~; (X, ~(*V.%G), F), ( Y, ~q, G)) satisfying that, if 
we know that the "true" value of the observable (X, ~, F)  for this system 
S is xo(Vo~ X),  then we can believe that the probability that Yo ( ~ Y), the 
"true" value of an observable ( Y, ~3, G) for this system S, belongs to a set 
F ( ~ q3) is given by fi,(Xo, F). 

Now we have the following main axiom. 

Axiom 2 (Generalization of Axiom 1). Let q~ be a state of a system S 
in a Hilbert space V and let (X, ~, F)  and ( Y, ~q, G) be observables in V. 
Let /x~ be any element in CP(O; (X, 5*(y,,~.G),~* F), ( Y, ~, G)). If  we get 
Xo ( ~ X) by the measurement of the observable (X, ~, F)  for this system 
S, then we can believe "almost surely" that the probability that Yo (~ Y), 
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the " t rue"  value of the observable ( Y, ~, G)  for this system S, belongs to 
a set F ( c  ~3) is given by/zo(Xo, F) 

Remark 4. We must comment  on the term "a lmost  surely" in this 
axiom. Of  course, if/z~, = / 2 ,  (where/2~ is defined in Postulate 4), we can 
say, by Postulate 4, that "we can believe (surely) that . . . "  in Axiom 2. On 
the contrary, if ~,(Xo, F)~/24,(Xo, F), then the judgement  in the above 
axiom is not true. However,  it holds, f rom (24), that there exists a null set 
N ~  4, ^ :T(y,~,c~ [i.e., (0, F(N)qJ)v = 0] such that ~ , (x ,  F) = tzq,(x, F) for all 
x ~ X - N and F e ~d. Also, it is clear, f rom Axiom 0, that the probabil i ty 
that xo ( e  X) ,  the value obtained by the measurement  of  the observable 
(X, ~, F) ,  belongs to N is 0 [i.e,, (qi, F(N)t~)v=O]. Therefore we can 
conclude that the judgement  in Postulate 4 is true "a lmost  surely." 

Now we shall show that the "errors"  of  an approximate  simultaneous 
measurement  

M [ = ( K ,  v, (X, o~, F), f= ( fo , f l , . . .  , fN-1))] 

for Ao, .. �9 AN_~ on a state u in a Hilbert space H can be naturally defined 
under  our interpretation. Before this, we must prepare the following 
postulate. 

Postulate 5. Let H and K be Hilbert spaces, and let V be a tensor 
Hilbert space of  H and K, that is, V = H | K. Let ( Y, ~, G)  be an observable 
in H. Note that (Y, ~, G| is an observable in V where ( G | 1 7 4  
I (VF e 9~) and I is an identity map  on K. Let u ~ H, v ~ K (11 u II H -- il v I1,, -- a) 
and put ~ = u| Then: 

(i) I f  we know that the " t rue"  value of  the observable ( Y, ~, G)  with 
respect to u is Yo ( ~ Y), then we can believe that the " t rue"  value 
of  the observable (Y, ~,G|  with respect to u| is same 

Yo ( e g) .  
(ii) I f  we know that the " t rue"  value Y0 (~ Y) of  the observable 

( Y, ~, G |  I )  with respect to u | v is yo ( e Y), then we can believe 
that the "true" value of the observable ( Y, ~g, G) with respect to 
u is same y (~ Y). 

Let H be a Hilbert space. Let Ao, A~,...,AN_1 be self-adjoint 
operators (i.e., physical quantities) on a Hilbert space H. Let u be a state 
in /4. Note that an approximate  simultaneous measurement  M =  
(K, v, (X, o~, F) , f= (fo,f~,... ,fN-1)) for Ao, A ~ , . . . ,  AN-1 with respect 
to u is equivalent to a simultaneous measurement  ((X,o~,F),f= 
(fo,fl , . . . , fN-1)) for fi, o , .A1 , . . . , , 4N_  1 with respect to u| in H| 
where Ak = SXfk(X)F(dx). In this measurement  M, when we get xo (~ X)  
by the measurement  of  the observable (X, o~, F)  with respect to u | v, we 
temporari ly regard fk (Xo) as the " t rue"  value of  Ak | I with respect to u | v 
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(so, by Postulate 5, the " t rue"  value of Ak with respect to u). Also, when 
we get Xo ( 6 X)  by the measurement of  the observable (X, ~, F)  with respect 
to u | v, we can believe "almost surely" that the probability that Yo ( ~ R), 
the " t rue"  value of an observable Ak | ! = (R, ~,  EAk| for this system S, 
belongs to a set F ( ~ ~ )  is given by/xu| (Xo, F: (X, ~u| F), Ak | I). ,_7, A k |  

Therefore, it is natural to define t~M(Ak, U, X0) , the kth error when we 
get Xo by the measurement of  the observable (X, if, F)  with respect to u | v, 
by [JR Ifk(X0)- ~121zu| d~)] 1/=. Also, since the probability that Xo ~ E is 
given by (u| F(E)(u| it is reasonable to define ~M(Ak, U), the kth 
average error in the measurement M with respect to a state u (~ H) ,  by 
[~x [6M(Ak, u; Xo)lZ(u| F(dxo)(U| ~/2. 

Therefore, we get the following definition. 

Definition 2. Let Ao, A 1 , . . . , A N - 1  be any physical quantities (i.e., 
self-adjoint operators) in a Hilbert space H. Let 

M = (K, v, (X, @, F ) , f =  ( f o , f~ , . . -  ,fN-a)) 

be an approximate simultaneous measurement of Ao, Aa , . . . ,  AN-1 in /4. 
Then, 6M(Ak, U; X), the kth error when we get x by this measurement M 
with respect to a state u ( c H) ,  is defined by [SR IA(x)- 
where 

tzuo~(x, F) ~ CP(u|  (X, o~| F), Ak |  o ;  A k |  

Also, ~M(Ak, U), the kth average error in the measurement M with respect 
to a state u ( ~ H) ,  is defined by 

[J'x I ~M(A~, u; x)]Z(uQv, F(dx)(u| 1/2 

Also, {gM(Ak, u ) , ] k = 0 ,  1 , . . . ,  N - I }  is called an average error in the 
measurement M with respect to a state u. 

Now we have the following proposition. 

Proposition 1. Let Ao, A 1 , . . . ,  AN-1 be any physical quantities (i.e., 
self-adjoint operators) in a Hilbert space /4. Let 

M = (K, v, (X, ~-, F) , f=  ( f o , f l , - . .  , fN- , ) )  

be an approximate simultaneous measurement of  Ao, A 1 , . . . ,  AN-a in H. 
Assume that J*k [=~xfk(x)F(dx)] and A k |  commute for each k. Then, 
the equalities AM(Ak, U) = gM(Ak, U) (k = 0, 1 , . . . ,  N -  1) hold. 

Proof Fix k. Put A k |  ~,  EA~| And put 

,~u| _ {.~ C ~] EAk| ( B)F(~-)P(F,.| F(~-)E&| ( B)P(F,u| B ~ @)} A k |  - -  
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By the commutativity of 2~ k and Ak(~I, fk: X-->R clearly is an 
~ - m e a s u r a b l e  function. Hence, we see, by (23), that 

[gM(Ak, U)] 2 

= fx (3M(Ak, U; X))2(U| F(dx)(u| 

= f ,  Yx [fk(X)--S~I2/Z,| d{)(u| F(dx)(u| 

= f Ix~| [fk(x)-r174162174174 
R ( , ~ k |  

= f f( [fk(x)-']2d(u(~v'F(dx)EAk~l(d')(u(~V)) 

=[aM(Ak,  u)I 2 �9 

Here we obtain the following theorem as a corollary of Theorem 1 and 
Proposition 1. 

Theorem 2. Let Ao and A 1 be a pair of conjugate observables in a 
Hilbert space H (i.e., symbolically, AoAx- AIAo = ih). Let 

M = (K, v, (X, ~, F),f= (fo,f,)) 
be an approximate simultaneous measurement of  Ao and A1 satisfying the 
additional condition 5. Assume that .4k [=Sxfk(X)F(dx)] and Ak | I com- 
mute for each k (k = 0, 1). Then, the following inequality holds: 

gM(Ao, u)" gM(A1, U) >-- h/2 (14) 

for all u c H (11 u I I .  = 1) ,  where the left-hand side of this inequality is defined 
as =o0 if dXM(Ak, U) = Oe for some k. 

If we take a standpoint within the interpretation proposed in this 
section, it is natural to consider that inequality (14) is just Heisenberg's 
uncertainty relation. However, if we study it within the Copenhagen inter- 
pretation, Theorem 2 does not seem to be suitable. Because there is 
no reason within the Copenhagen interpretation to define the error 
{gm(Ak, u)lk = 0, 1} as mentioned in Definition 2. 

Remark 5. We are afraid that there may be various opinions about 
Postulate 2. For example, some physicists may assert that Postulate 2 holds 
only when P(F,,) = I. However, it should be noted that, even if we agree to 
this assertion, our arguments (and results) in this note are essentially 
effective. Also, other physicists may assert that Postulate 2 holds only when 
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~ 0  oo P(v.,> = F ( X -  u {~7i~ F(E~ = 0}), where {~i}i=1 is defined by condition 
8. Of course, even in this case, our arguments (and results) are essentially 
effective. Our standpoint is that Postulate 2 should be assumed in quantum 
mechanics if there does not exist any experiment incompatible with it. 

3. APPLICATION TO ANALYSIS OF A TRAJECTORY 
OF A PARTICLE 

The interpretation proposed in the previous section seems to be very 
convenient if we want to discuss quantum mechanical theory. As a typical 
example, we shall analyze the trajectory of  a particle (like "Wilson cham- 
ber") under  this interpretation. It will be done by developing ideas of  
Arthurs and Kelly (1965) and She and Heffner (1966). 

We shall consider a particle S in the one-dimensional real line R, whose 
state function u(t, .) [ ~ H =-- L2(R), - o o < t  < oo] satisfies the following 
Schr6dinger equation with a Hamiltonian ~=-(h2 /2m)02 /0x2:  

Ou(t, x) h 2 O2u(t, x) 
i h - -  - -  - (Ygu)( t)  ( - o o < t  < oo) (15) 

Ot 2m Ox 2 

u(O, x) = u(x) 

Put 0 > 0 and N - -  2 (integer). Let A be a position observable in H, that is, 
(Au)(x)  = xu(x).  

Now we consider the approximate "simultaneous" measurement M of 
the positions of a particle S at time tk = Ok (k = 0, 1, 2 , . . . ,  N -  1). Note 
that (15) is equivalent to the following Heisenberg kinetic equation of the 
time evolution of  the observable A, ( - oo<  t < oo) in a Hilbert space H with 
a Hamiltonian H 

dA, 
- i t i - -~-= ~ A t - A t ~  ( - o o <  t < oo) (16) 

Therefore we can consider that the measurement M is equivalent to the 
~A lN-1 approximate simultaneous measurement of self-adjoint operators t okJk=o 

for a particle S with a state u(x) = u(O, x). An easy calculation shows that 

ht d 
A, = U_,AU, = U_txU, = x + - - -  (17) 

im dx 

where the one-parameter unitary group U, (= e -~-l~e') is represented by 

( m )l /2f~o [imznt 1 ( U , u ) ( x ) = u ( t , x ) =  exp TZ-7~.(x-sC) 2 u(~)d~ (18) 
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Here we see easily that 

A t A , - A ~ A , = h ( t - s )  (t, s e N )  (19) 
im 

Let V= H |  = H @  (@N_--llH) ----c~N-1H,,c.y k =  0 = L2(R N) and t~, = | U ,  that 
is, for all 0 e L2(RN), 

. . . ,  = ) 
x O ( ~ : o ,  �9 �9 - ,  ~ : ~ - , )  d $ o , .  �9 � 9  d ~ : ~ _ ,  

(20) 

Let ak, ( k, n = O, 1 , . . . ,  N -  1) be real numbers such that 
N - - 1  

ak,,al, = 0 ( k # l) 
n=O 

A 
and akO = 1 (Vk). Define self-adjoint operators Aok (k = O, 1 , . . . ,  N -  1) in 
V [~L2(RN)] by 

Aok = ~ ak,~ X n + -  (21) 
,,=o tm 0 

It is clear that AOk ( k  = 0, 1, 2 . . . .  , N -  1) commute. Also, for each k (k = 
0, 1, 2 , . . . ,  N -  1), Aok and Aok|  O/OXo] commute. We 
see, by (17), that 

.4Ok = U_okl, Cek,X,/ Uok, A o k |  U-okXoUok (22) 

Then, the spectral measure if'Ok of "40k [i.e., "4ok = ~R hF.ok (dh)] is represented 
by 

Eok(E) = U-okX ~; Y. ak,,X,, Uok (V ~ -- e ~ )  (23) 
n~O 

where X(E; y) = 1 (y e E), =0 (y ~ E), i.e., a characteristic function of "~ 
From the commutativity of {Eok}~--d (i.e., ~ N-1 {Aok}k=O), we can define an 
observable (X, ~, F) = (R N, ~N, F) in V where 

N - I  

F ( ~ o X ~ ,  x ' ' ' x ~ N - 1 )  = r[ Eok('~k) (24) 
k = 0  

Put U(Xo)= Uo(Xo) and 

" U ( X , , . . . ,  XN-,)~--- ~ ) l ( X , )  " " " VN-I(XN_I)C~ L 2 ( R N - I ) ( ~ K )  (llvllK - -  1 )  

such that 

fR fR dV(Xk) = e~(x~) ~ dXk = O, (k = 1, 2 , . . . ,  N -  1) 

( 2 5 )  
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Put fk: X (-=R N) --> R (k - 0, 1 , . . . ,  N -  1) such that  fk (Xo,. �9 �9 xN-1) = Xk. 
Note  that  Aok = ~x fk (X)F(dx) .  

N o w  we shall show that  M =  (K, v, (X,  ~,  F ) , f =  (fo . . . .  , f u -1 ) )  
I A 1N-1 defined above is an approx imate  s imul taneous measurement  o f  t OkJk=O 

in /4. The condi t ion 1 (in the In t roduct ion)  is clear. Also, we see, by  (25), 
that, for  any u c /4 ,  

<u| ~ o ~ ( u | 1 7 4  

N - - X (  hOk O ) 
= ( U o V ~ ' " V i _ l ,  ~] ak~ X~4 - UoV~'' 'VN_~) 

n = o  lm OXn 

( ( ~ l O k 2 o )  t N-1 ( ( ~lOk ~ ) 1  = OlkO U 0 , X 0 -~ - U 0 "Iv ~ Odkn "On, Xn -~ - 'On 
tm n= l lm 0 

: bl 0 , Xo -{ - U 0 
lm 

= (u, AokU)H (26) 

which implies that D(Aok)=  D~(Jlok), so condi t ions  2 and 3 hold. 
Note  that  the probabi l i ty  that  the measurement  value )7 = (Xo, �9 �9 �9 xN-1) 

obta ined by  the measurement  M belongs to a set ~o x 7~ 1 x . . .  x EN-~ is 
given by 

( 1 u| II Eok(~--k)(u| (27) 
k = O  H@K 

Of  course,  this measurement  value g = 07o,. �9 �9 ~s -1)  represents just the 
discrete t rajectory o f  a part icle S, though  it includes errors. 

Using Proposi t ion 1, we can calculate the average error {gM(Aok, U ~IN-ljsk=0 
in the approximate  s imul taneous  measurement  M as follows: 

g~a( Aot., u) 

= H[.PiOk--Aok|174174 

= Olkn X n "1- - U0~)I  " " " ~ N - - I  
n= l lm Ox n 

= ~ l_n~ O~k,~ x~+ im ax--~/ 

. . .  ] 2 . - 11/2 
X V l ( X 1 )  !.)N--I(XN--1).j dxl" �9 d x u - i  

.,,,,I 
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O f  course,  if  necessary,  it is poss ible  to obta in  the e r r o r  {tSM(Aok , U; Jlk=O 
when  we get the m e a s u r e m e n t  value 2 --- (20 . . . .  , s  However ,  it seems 

o-~. u ~ v  to be  compl ica ted  in general  since a~Aok| canno t  be decided easily. So, it 
is convenien t  to use ff(k~ = {R k • E • R n - k - l I E  e ~ }  as a substi tute for  
~ , |  Since (X, ~(k), F )  and  Aok| commute ,  we see that  A o k |  �9 

ISh(Aok, u, 2)12 

-= f a  [fk(2) -- r174 dsr (X, ~-r F), Aok| 

f [2k -- ~:12 l im (u | v, F ( R  k • E x RN-k-I)EA~| | v))n| 
~- ,~  (u|215215174174 

(u | v, ~o~(E) O_o~( X~ - Xo): Oo~( U | v)).| 
= lim 

= lim ( {  ! ~ - ~ o +  x~-X.=o- ~- '  -k.~~ ~ ]2k--X~176174 

• (Xo, �9 �9 �9 , XN-,)I 2 dxo. �9 " dXN-1} 

• l[ (lok(U| v)](Xo,.  � 9  xN_,)l = dxo""  dxu_~ 
N - I  

X k - - ~ n = O  OtknXnl<e 

(29) 

We th ink  that  it is sufficient to use 8~(Aok, u, 2) [or  more  roughly  
gM(Aok, U)] ins tead o f  8M(Aok, U, 2) in mos t  cases [ though we have  no p r o o f  
that  8~(Aok, u, 2) = 6M(Aok, U, 2)].  No te  also that  we can calculate  (27)-(29)  
numerical ly .  Therefore ,  wha t  is impor t an t  is that  we can make  a compu te r  
s imula t ion  abou t  this discrete t ra jectory ( 2 o , . . . ,  2N_~) o f  a part icle  S. Of  
course,  this m e a s u r e m e n t  M includes errors. However ,  we can es t imate  it! 

Also,  if  we choose  u(x) = 1 / [2(b  - a)] 1/2 for  x ~ ( - b ,  - a )  u (a, b), = 0  
otherwise,  we can m a k e  a c o m p u t e r  s imula t ion  for  a discrete t ra jec tory  of  
the two-sli t  exper iment .  

4. C O N C L U S I O N S  

In this note,  we p r o p o s e d  an in te rpre ta t ion  in nonrelat ivis t ic  q u a n t u m  
theory.  U n d e r  this in terpre ta t ion ,  we clarified tha t  the uncer ta int ies  (i.e., 
Aq and Ap) in He i senberg ' s  uncer ta in ty  relat ion can be character ized as 
(average)  errors  in an a p p r o x i m a t e  s imul taneous  measu remen t .  Also; this 
in te rpre ta t ion  seems to be  very convenient  for  a discussion of  q u a n t u m  
mechan ica l  theory.  As an example ,  we ana lyzed  the (discrete) t ra jec tory  o f  
a part icle,  and  p roposed  a compu te r  s imula t ion  for  this t rajectory.  
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